Author: Dr Rita Govender, MBChB (UND) DCH (SA) FC PATH (SA) CLIN HAEM (SA)

The role of PFA-200 in evaluating platelet dysfunction

Overview of the haemostatic system and guide to investigation

Testing						
Stage	Component	Result	1 st line	2 nd line		
Primary haemostasis	Vessel wall and subendothelial elementsPlateletsVon Willebrand factor	Formation of a viable platelet plug	- FBC and peripheral smear - Bleeding time - PFA 200	 vWF assays Multimer pattern Platelet aggregometry Glycoprotein receptor by flow cytometry Electron microscopy of platelet ultrastructure 		
Secondary haemostasis	Activation of coagulation factors	Stabilisation of platelet plug by cross-linked fibrin	- PTT - PT - Fibrinogen	Thrombin timeInhibitor screenSpecific factorsFactor XIIIUrea clot lysis		
Removal of plug by fibrinolytic system once healing is complete Increased fibrinolysis manifests as bleeding tendency – usually delayed			PTT PT Fibrinogen FDPs and D-dimer	Plasminogen levelsTissue plasminogen activator (TPA)Euglobulin clot lysisAlpha 2 antiplasmin		

The focus of this update is screening for platelet dysfunction:

- 1. As suggested by history and the presence of plateletrelated bleeding diathesis
- 2. Pre-op assessment of bleeding risk in patients with a positive bleeding history

NB: unselected testing of patients is not encouraged.

The following first-line tests are recommended for primary haemostasis:

1. FBC and peripheral smear for:

- platelet count, morphology size and granular content; thrombocytosis (as in myeloproliferative disorders) and thrombocytopaenia may be associated with bleeding;
- effects of bleeding on Hb;
- the presence of abnormal cells to survey for underlying haematological neoplasm; and
- changes suggesting infection and DIC.

2. Bleeding time:

In vivo test of primary haemostasis.

Principle:

- A standard incision is made on the volar surface of the forearm with the application of 40 mmHg pressure to
- Time to cessation of bleeding is recorded

Causes of prolonged bleeding time (>8 minutes):

- Thrombocytopaenia: progressive prolongation with counts < 75
 - Contraindicated when counts are < 50 as bleeding time may be difficult to arrest.
- Qualitative defect of platelets that may be congenital as in thrombasthaenia, storage pool defects or acquired due to drugs, uraemia, paraproteins, myelodysplastic syndrome and myeloproliferative neoplasms
- Von Willebrand's Disease
- Vascular abnormality, e.g. Ehlers-Danlos Syndrome
- Occasionally severe deficiency of factor V, XI or afibrinogenaemia

The main disadvantage is that it is influenced by a number of variables, which are operator- and patient-dependent (therefore difficult to standardise):

- Sphygmomanometer pressure
- Orientation of incision
- Oedema
- Blotting technique

NB: Normal bleeding time does not exclude defect in haemostasis.

Consistent correlation with bleeding at other sites is lacking.

3. PFA - 200:

This test maybe seen as a cross between bleeding time and quick aggregation testing.

Principle:

- Citrated whole blood is aspirated at high shear rates through disposable cartridges.
- The cartridge contains an aperture within a membrane coated with either collagen and epinephrine (Col/EPI) or collagen and ADP (Col/ADP).
- The agonists induce platelet adhesion, activation and aggregation, resulting in occlusion of the aperture and hence cessation of blood flow.

Parameter is reported as closure time.

Variables affecting results:

- Test must be performed within four hours of blood collection.
- HCT < 35% and platelet count < 150 may affect closure
- Samples with HCT > 50% and platelet count > 500 have not been evaluated.
- Fatty acids, lipaemia.
- Haemolysis of sample.

Advantages

- Small volume of citrated venous blood (therefore suitable for paediatric samples as well)
- Insensitive to clotting factor deficiency (not dependent on plasma fibrinogen of fibrin generation)
- Better standardisation
- No influence on result from oedema, loss of connective tissue, presence of fragile vessels (as in bleeding time performed in elderly patients)

Interpretation						
	Normal patient	Aspirin	Von Willebrand's Disease	Glanzmann thrombasthenia		
Col/EPI	Normal 82–150 s	Prolonged	Prolonged	Prolonged		
Col/ADP	Normal 62–100 s	Normal	Prolonged	Prolonged		

In the event of abnormal results, further testing is indicated, especially if history supports a bleeding diathesis.

Consultation with a clinical haematologist or haematopathologist is strongly recommended.

- Complete review of medication and toxin history (herbal, homeopathic, occupational)
- vWF antigen, multimer analysis
- Platelet aggregometry
- Analysis of membrane glycoprotein by flow cytometry
- Electron microscopic evaluation of platelet structure

The test may be normal despite abnormal platelet function:

- In Storage Pool Disease
- Primary secretion defects
- Mild VWDx

The need for further testing must be guided by history and clinical features supportive of platelet disorder.

Availability: Testing on the PFA 200 requires a sample < four hours old. Request for the test must take into account transit time of sample to laboratory hosting the instrument.

References:

Bain, B.J., Bates, I., Laffan, M.A. & Lewis, S.M. 2012. Dacie and Lewis Practical Haematology, 11th edition, Churchill Livingstone.

British Committee for Standards in Haematology. 2011. Postgraduate haematology: guidelines for laboratory investigation of inheritable platelet disorders Aug 2011